Search results
Results From The WOW.Com Content Network
Block matrix operations; Cracovian product, defined as A ∧ B = B T A; Frobenius inner product, the dot product of matrices considered as vectors, or, equivalently the sum of the entries of the Hadamard product; Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
The product cA of a number c (also called a scalar in this context) and a matrix A is computed by multiplying every entry of A by c: (), =, This operation is called scalar multiplication, but its result is not named "scalar product" to avoid confusion, since "scalar product" is often used as a synonym for "inner product". For example:
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.
The matrix product of a m-by-n matrix A and a n-by-k matrix B is the m-by-k matrix C given by (), = =,,. [2] This matrix product is denoted AB. Unlike the product of numbers, matrix products are not commutative, that is to say AB need not be equal to BA. [2]
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
This product assumes the partitions of the matrices are their columns. In this case m 1 = m, p 1 = p, n = q and for each j: n j = q j = 1. The resulting product is a mp × n matrix of which each column is the Kronecker product of the corresponding columns of A and B. Using the matrices from the previous examples with the columns partitioned:
Simply, in coordinates, the inner product is the product of a covector with an vector, yielding a matrix (a scalar), while the outer product is the product of an vector with a covector, yielding an matrix. The outer product is defined for different dimensions, while the inner product requires the same dimension.