When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian beam - Wikipedia

    en.wikipedia.org/wiki/Gaussian_beam

    The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.

  3. Complex beam parameter - Wikipedia

    en.wikipedia.org/wiki/Complex_beam_parameter

    In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...

  4. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    This beam can be propagated through an optical system with a given ray transfer matrix by using the equation [further explanation needed]: [] = [] [], where k is a normalization constant chosen to keep the second component of the ray vector equal to 1.

  5. M squared - Wikipedia

    en.wikipedia.org/wiki/M_squared

    In laser science, the parameter M 2, also known as the beam propagation ratio or beam quality factor is a measure of laser beam quality. It represents the degree of variation of a beam from an ideal Gaussian beam. [1] It is calculated from the ratio of the beam parameter product (BPP) of the beam to that of a Gaussian beam with the same wavelength.

  6. Rayleigh length - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_length

    Gaussian beam width () as a function of the axial distance .: beam waist; : confocal parameter; : Rayleigh length; : total angular spread In optics and especially laser science, the Rayleigh length or Rayleigh range, , is the distance along the propagation direction of a beam from the waist to the place where the area of the cross section is doubled. [1]

  7. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    The NA of a Gaussian laser beam is then related to its minimum spot size ("beam waist") by NA ≃ λ 0 π w 0 , {\displaystyle {\text{NA}}\simeq {\frac {\lambda _{0}}{\pi w_{0}}},} where λ 0 is the vacuum wavelength of the light, and 2 w 0 is the diameter of the beam at its narrowest spot, measured between the e −2 irradiance points ("Full ...

  8. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.

  9. Beam emittance - Wikipedia

    en.wikipedia.org/wiki/Beam_emittance

    If the beam is distributed in phase space with a Gaussian distribution, the emittance of the beam may be specified in terms of the root mean square value of and the fraction of the beam to be included in the emittance. The equation for the emittance of a Gaussian beam is: [1]: 83