When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    Because the square of a standard normal distribution is the chi-squared distribution with one degree of freedom, the probability of a result such as 1 heads in 10 trials can be approximated either by using the normal distribution directly, or the chi-squared distribution for the normalised, squared difference between observed and expected value.

  3. Proofs related to chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Proofs_related_to_chi...

    Here is one based on the distribution with 1 degree of freedom. Suppose that X {\displaystyle X} and Y {\displaystyle Y} are two independent variables satisfying X ∼ χ 1 2 {\displaystyle X\sim \chi _{1}^{2}} and Y ∼ χ 1 2 {\displaystyle Y\sim \chi _{1}^{2}} , so that the probability density functions of X {\displaystyle X} and Y ...

  4. Chi distribution - Wikipedia

    en.wikipedia.org/wiki/Chi_distribution

    The chi distribution has one positive integer parameter , which specifies the degrees of freedom (i.e. the number of random variables ). The most familiar examples are the Rayleigh distribution (chi distribution with two degrees of freedom ) and the Maxwell–Boltzmann distribution of the molecular speeds in an ideal gas (chi distribution with ...

  5. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    The chi-square distribution has (k − c) degrees of freedom, where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one. For example, for a 3-parameter Weibull distribution, c = 4.

  6. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    The approximation to the chi-squared distribution breaks down if expected frequencies are too low. It will normally be acceptable so long as no more than 20% of the events have expected frequencies below 5. Where there is only 1 degree of freedom, the approximation is not reliable if expected frequencies are below 10.

  7. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    The degree of freedom, =, equals the number of observations n minus the number of fitted parameters m. In weighted least squares , the definition is often written in matrix notation as χ ν 2 = r T W r ν , {\displaystyle \chi _{\nu }^{2}={\frac {r^{\mathrm {T} }Wr}{\nu }},} where r is the vector of residuals, and W is the weight matrix, the ...

  8. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Similarly, the reduced chi-square is calculated as the SSR divided by the degrees of freedom. Both R 2 and the norm of residuals have their relative merits. For least squares analysis R 2 varies between 0 and 1, with larger numbers indicating better fits and 1 representing a perfect fit. The norm of residuals varies from 0 to infinity with ...

  9. Generalized chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_chi-squared...

    Since a non-central chi-squared variable is a sum of squares of normal variables with different means, the generalized chi-square variable is also defined as a sum of squares of independent normal variables, plus an independent normal variable: that is, a quadratic in normal variables.