Search results
Results From The WOW.Com Content Network
The decomposition can be derived from the fundamental property of eigenvectors: = = =. The linearly independent eigenvectors q i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products Ax, for x ∈ C n, which is the same as the image (or range) of the corresponding matrix transformation, and also the ...
2. The upper triangle of the matrix S is destroyed while the lower triangle and the diagonal are unchanged. Thus it is possible to restore S if necessary according to for k := 1 to n−1 do ! restore matrix S for l := k+1 to n do S kl := S lk endfor endfor. 3. The eigenvalues are not necessarily in descending order.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.
Source: [7] Matrix-free, i.e. does not require storing the coefficient matrix explicitly, but can access the matrix by evaluating matrix-vector products.; Factorization-free, i.e. does not require any matrix decomposition even for a generalized eigenvalue problem.
Matrix pencils play an important role in numerical linear algebra.The problem of finding the eigenvalues of a pencil is called the generalized eigenvalue problem.The most popular algorithm for this task is the QZ algorithm, which is an implicit version of the QR algorithm to solve the eigenvalue problem = without inverting the matrix (which is impossible when is singular, or numerically ...
The remaining task has been reduced to finding the eigenvalues of a diagonal matrix plus a rank-one correction. Before showing how to do this, let us simplify the notation. We are looking for the eigenvalues of the matrix D + w w T {\displaystyle D+ww^{T}} , where D {\displaystyle D} is diagonal with distinct entries and w {\displaystyle w} is ...
Decomposition (complex version): =, where U is a unitary matrix, is the conjugate transpose of U, and T is an upper triangular matrix called the complex Schur form which has the eigenvalues of A along its diagonal.