When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.

  3. Unit doublet - Wikipedia

    en.wikipedia.org/wiki/Unit_doublet

    Approximation of a unit doublet with two rectangles of width k as k goes to zero. In mathematics, the unit doublet is the derivative of the Dirac delta function.It can be used to differentiate signals in electrical engineering: [1] If u 1 is the unit doublet, then

  4. Kronecker delta - Wikipedia

    en.wikipedia.org/wiki/Kronecker_delta

    The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...

  5. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula ⁡ := = for some given period . [1]

  6. Delta potential - Wikipedia

    en.wikipedia.org/wiki/Delta_potential

    The delta potential is the potential = (), where δ(x) is the Dirac delta function. It is called a delta potential well if λ is negative, and a delta potential barrier if λ is positive. The delta has been defined to occur at the origin for simplicity; a shift in the delta function's argument does not change any of the following results.

  7. Distribution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(mathematics)

    The following proposition states two necessary and sufficient conditions for the continuity of a linear function on () that are often straightforward to verify. Proposition : A linear functional T on C c ∞ ( U ) {\displaystyle C_{c}^{\infty }(U)} is continuous, and therefore a distribution , if and only if any of the following equivalent ...

  8. Functional derivative - Wikipedia

    en.wikipedia.org/wiki/Functional_derivative

    The definition given in a previous section is based on a relationship that holds for all test functions (), so one might think that it should hold also when () is chosen to be a specific function such as the delta function. However, the latter is not a valid test function (it is not even a proper function).

  9. Hooley's delta function - Wikipedia

    en.wikipedia.org/wiki/Hooley's_delta_function

    In mathematics, Hooley's delta function (()), also called Erdős--Hooley delta-function, defines the maximum number of divisors of in [,] for all , where is the ...

  1. Related searches foresets of the delta function in matlab list of values of two cells based

    delta function examplesderivative of the delta function