Search results
Results From The WOW.Com Content Network
When used in this way, the stronger notion (such as "strong antichain") is a technical term with a precisely defined meaning; the nature of the extra conditions cannot be derived from the definition of the weaker notion (such as "antichain"). sufficiently large, suitably small, sufficiently close
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
W^5 – which was what we wanted. Synonym of Q.E.D. walog – without any loss of generality. wff – well-formed formula. whp – with high probability. wlog – without loss of generality. WMA – we may assume. WO – well-ordered set. [1] WOP – well-ordered principle. w.p. – with probability. wp1 – with probability 1.
However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones. This glossary of calculus is a list of definitions about calculus, its sub-disciplines, and related fields.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Aristotle also thought that quantity alone does not distinguish mathematics from sciences like physics; in his view, abstraction and studying quantity as a property "separable in thought" from real instances set mathematics apart. [5] Auguste Comte's definition tried to explain the role of mathematics in coordinating phenomena in all other ...