Ad
related to: regular decagon angles
Search results
Results From The WOW.Com Content Network
A regular decagon has all sides of equal length and each internal angle will always be equal to 144°. [1] Its Schläfli symbol is {10} [ 2 ] and can also be constructed as a truncated pentagon , t{5}, a quasiregular decagon alternating two types of edges.
Golden triangles can also be found in a regular decagon, an equiangular and equilateral ten-sided polygon, by connecting any two adjacent vertices to the center. This is because: 180(10−2)/10 = 144° is the interior angle, and bisecting it through the vertex to the center: 144/2 = 72°. [1]
A regular pentagon has 5 equal edges and 5 equal angles. ... quadrilateral and nonagon are exceptions, although the regular forms trigon ... decagon; 11: hendecagon:
Caption text Name Persian name number of corners convex angle specifications regular decagon: Tabl: 10: yes: 144° elongated (irregular convex) hexagon Shesh Band: 6: yes [ 72°, 144°, 144° ] ×2
A regular star pentagon, {5/2}, has five vertices (its corner tips) and five intersecting edges, while a concave decagon, |5/2|, has ten edges and two sets of five vertices. The first is used in definitions of star polyhedra and star uniform tilings , while the second is sometimes used in planar tilings.
A regular decagram is a 10-sided polygram, represented by symbol {10/n}, containing the same vertices as regular decagon.Only one of these polygrams, {10/3} (connecting every third point), forms a regular star polygon, but there are also three ten-vertex polygrams which can be interpreted as regular compounds:
A regular triangle, decagon, and pentadecagon can completely fill a plane vertex. However, due to the triangle's odd number of sides, the figures cannot alternate around the triangle, so the vertex cannot produce a semiregular tiling .
There are many relations among the uniform polyhedra. [1] [2] [3] Some are obtained by truncating the vertices of the regular or quasi-regular polyhedron.Others share the same vertices and edges as other polyhedron.