Search results
Results From The WOW.Com Content Network
By measuring the level of water remaining in the vessel, the time can be measured with uniform graduation. This is an example of outflow clepsydra. Since the water outflow rate is higher when the water level is higher (due to more pressure), the fluid's volume should be more than a simple cylinder when the water level is high.
McFeeters index: If looking for water bodies or change in water level (e.g. flooding), then it is advisable to use the green and NIR spectral bands [18] or green and SWIR spectral bands. Modification of normalised difference water index (MNDWI) has been suggested for improved detection of open water by replacing NIR spectral band with SWIR. [19]
Depiction of a larrikin, from Nelson P. Whitelocke's book A Walk in Sydney Streets on the Shady Side (1885). Larrikin is an Australian English term meaning "a mischievous young person, an uncultivated, rowdy but good-hearted person", or "a person who acts with apparent disregard for social or political conventions".
File:Lagrangian vs Eulerian [further explanation needed] Eulerian perspective of fluid velocity versus Lagrangian depiction of strain.. In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time.
Propagation of shoaling long waves, showing the variation of wavelength and wave height with decreasing water depth.. In fluid dynamics, Green's law, named for 19th-century British mathematician George Green, is a conservation law describing the evolution of non-breaking, surface gravity waves propagating in shallow water of gradually varying depth and width.
This equation and notation works in much the same way as the temperature equation. This equation describes the motion of water from one place to another at a point without taking into account water that changes form. Inside a given system, the total change in water with time is zero. However, concentrations are allowed to move with the wind.
The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant (see the related section below). The equations are derived [ 2 ] from depth-integrating the Navier–Stokes equations , in the case where the horizontal length scale is much greater than the vertical ...
The liquid water path also contributes to important cloud properties. As the value of the liquid water path increases, so does the albedo of the cloud. This increase in albedo is seen most quickly at the lower end of the liquid water path spectrum, that is, the smaller the amount of total water, the quicker the albedo increases.