Search results
Results From The WOW.Com Content Network
By definition, different streamlines at the same instant in a flow do not intersect, because a fluid particle cannot have two different velocities at the same point. However, pathlines are allowed to intersect themselves or other pathlines (except the starting and end points of the different pathlines, which need to be distinct).
File:Lagrangian vs Eulerian [further explanation needed] Eulerian perspective of fluid velocity versus Lagrangian depiction of strain.. In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time.
By measuring the level of water remaining in the vessel, the time can be measured with uniform graduation. This is an example of outflow clepsydra. Since the water outflow rate is higher when the water level is higher (due to more pressure), the fluid's volume should be more than a simple cylinder when the water level is high.
The velocity satisfies the continuity equation for incompressible flow: ∇ ⋅ u = 0. {\displaystyle \quad \nabla \cdot \mathbf {u} =0.} Although in principle the stream function doesn't require the use of a particular coordinate system, for convenience the description presented here uses a right-handed Cartesian coordinate system with ...
The equation implies that for any incompressible fluid, such as liquid water, the discharge (Q) is equal to the product of the stream's cross-sectional area (A) and its mean velocity (¯), and is written as: = ¯ where is the discharge ([L 3 T −1]; m 3 /s or ft 3 /s)
The above groundwater flow equations are valid for three dimensional flow. In unconfined aquifers, the solution to the 3D form of the equation is complicated by the presence of a free surface water table boundary condition: in addition to solving for the spatial distribution of heads, the location of this surface is also an unknown. This is a ...
This equation and notation works in much the same way as the temperature equation. This equation describes the motion of water from one place to another at a point without taking into account water that changes form. Inside a given system, the total change in water with time is zero. However, concentrations are allowed to move with the wind.
The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant (see the related section below). The equations are derived [ 2 ] from depth-integrating the Navier–Stokes equations , in the case where the horizontal length scale is much greater than the vertical ...