Search results
Results From The WOW.Com Content Network
Neurons expressing certain types of neurotransmitters sometimes form distinct systems, where activation of the system affects large volumes of the brain, called volume transmission. Major neurotransmitter systems include the noradrenaline (norepinephrine) system, the dopamine system, the serotonin system, and the cholinergic system, among others.
The area postrema, a paired structure in the medulla oblongata of the brainstem, [1] is a circumventricular organ having permeable capillaries and sensory neurons that enable its dual role to detect circulating chemical messengers in the blood and transduce them into neural signals and networks.
Neurosecretion is the release of extracellular vesicles and particles from neurons, astrocytes, microglial and other cells of the central nervous system.These neurohormones, produced by neurosecretory cells, are normally secreted from nerve cells in the brain that then circulate into the blood.
The endocrine system [1] is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems.
A neurohormone is any hormone produced and released by neuroendocrine cells (also called neurosecretory cells) into the blood. [1] [2] By definition of being hormones, they are secreted into the circulation for systemic effect, but they can also have a role of neurotransmitter or other roles such as autocrine (self) or paracrine (local) messenger.
Specialized groups of neuroendocrine cells can be found at the base of the third ventricle in the brain (in a region called the hypothalamus). This area controls most anterior pituitary cells and thereby regulates functions in the entire body, like responses to stress , cold, sleep , and the reproductive system .
Autocrine signaling involves a cell secreting a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell itself. [13] This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling.
The food entering the gastrointestinal tract triggers the release of these hormones, which act on the brain to produce satiety. The brain contains both CCK-A and CCK-B receptors. Glucostatic hypothesis: The activity of the satiety center in the ventromedial nuclei is probably governed by the glucose utilization in the neurons. It has been ...