Ad
related to: simple stress and strain problems
Search results
Results From The WOW.Com Content Network
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress change sign, and the stress is called compressive stress.
A rod under torsion is a practical example for a body under simple shear. [5] If e 1 is the fixed reference orientation in which line elements do not deform during the deformation and e 1 − e 2 is the plane of deformation, then the deformation gradient in simple shear can be expressed as
The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...
Total strain energy theory – This theory assumes that the stored energy associated with elastic deformation at the point of yield is independent of the specific stress tensor. Thus yield occurs when the strain energy per unit volume is greater than the strain energy at the elastic limit in simple tension.
The relationship between stress and strain can be simplified for specific stress or strain rates. For high stress or strain rates/short time periods, the time derivative components of the stress–strain relationship dominate. In these conditions it can be approximated as a rigid rod capable of sustaining high loads without deforming.
Elevated levels of cortisol and chronic stress increase your risk of physical health problems. Since a stress response can increase your heart rate and blood pressure, chronic stress can lead to ...
The stress and strain can be normal, shear, or a mixture, and can also can be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stress–strain curve typically refers to the relationship between axial normal stress ...