When.com Web Search

  1. Ads

    related to: 3 examples of pythagorean triples theorem problems worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).

  3. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...

  4. Boolean Pythagorean triples problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_Pythagorean...

    The problem asks if it is possible to color each of the positive integers either red or blue, so that no Pythagorean triple of integers a, b, c, satisfying + = are all the same color. For example, in the Pythagorean triple 3, 4, and 5 ( 3 2 + 4 2 = 5 2 {\displaystyle 3^{2}+4^{2}=5^{2}} ), if 3 and 4 are colored red, then 5 must be colored blue.

  5. Integer triangle - Wikipedia

    en.wikipedia.org/wiki/Integer_triangle

    The only primitive Pythagorean triangles for which the square of the perimeter equals an integer multiple of the area are (3, 4, 5) with perimeter 12 and area 6 and with the ratio of perimeter squared to area being 24; (5, 12, 13) with perimeter 30 and area 30 and with the ratio of perimeter squared to area being 30; and (9, 40, 41) with ...

  6. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    A tree of primitive Pythagorean triples is a mathematical tree in which each node represents a primitive Pythagorean triple and each primitive Pythagorean triple is represented by exactly one node. In two of these trees, Berggren's tree and Price's tree, the root of the tree is the triple (3,4,5), and each node has exactly three children ...

  7. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.

  8. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    Fermat's last theorem Fermat's last theorem, one of the most famous and difficult to prove theorems in number theory, states that for any integer n > 2, the equation a n + b n = c n has no positive integer solutions. Fermat's little theorem Fermat's little theorem field extension A field extension L/K is a pair of fields K and L such that K is ...

  9. Plimpton 322 - Wikipedia

    en.wikipedia.org/wiki/Plimpton_322

    This table lists two of the three numbers in what are now called Pythagorean triples, i.e., integers a, b, and c satisfying a 2 + b 2 = c 2. From a modern perspective, a method for constructing such triples is a significant early achievement, known long before the Greek and Indian mathematicians discovered solutions to this problem. There has ...