Search results
Results From The WOW.Com Content Network
Many statistical and data processing systems have functions to convert between these two presentations, for instance the R programming language has several packages such as the tidyr package. The pandas package in Python implements this operation as "melt" function which converts a wide table to a narrow one. The process of converting a narrow ...
Python has the statsmodelsS package which includes many models and functions for time series analysis, including ARMA. Formerly part of the scikit-learn library, it is now stand-alone and integrates well with Pandas. PyFlux has a Python-based implementation of ARIMAX models, including Bayesian ARIMAX models.
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
Graphical examination of count data may be aided by the use of data transformations chosen to have the property of stabilising the sample variance. In particular, the square root transformation might be used when data can be approximated by a Poisson distribution (although other transformation have modestly improved properties), while an inverse sine transformation is available when a binomial ...
The Pandas and Polars Python libraries implement the Pearson correlation coefficient calculation as the default option for the methods pandas.DataFrame.corr and polars.corr, respectively. Wolfram Mathematica via the Correlation function, or (with the P value) with CorrelationTest. The Boost C++ library via the correlation_coefficient function.
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})