Search results
Results From The WOW.Com Content Network
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
The magnetic moment of the electron is =, where μ B is the Bohr magneton, S is electron spin, and the g-factor g S is 2 according to Dirac's theory, but due to quantum electrodynamic effects it is slightly larger in reality: 2.002 319 304 36.
The toroidal ring model, known originally as the Parson magneton or magnetic electron, is a physical model of subatomic particles. It is also known as the plasmoid ring, vortex ring, or helicon ring. This physical model treated electrons and protons as elementary particles, and was first proposed by Alfred Lauck Parson in 1915.
where N is the Avogadro constant, g is the Landé g-factor, and μ B is the Bohr magneton. In this treatment it has been assumed that the electronic ground state is not degenerate, that the magnetic susceptibility is due only to electron spin and that only the ground state is thermally populated.
In units of the Bohr magneton (μ B), it is −1.001 159 652 180 59 (13) μ B, [2] a value that was measured with a relative accuracy of 1.3 × 10 −13. Magnetic moment of an electron [ edit ]
The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.
Here is the Bohr magneton and is the nuclear magneton. This last approximation is justified because μ N {\displaystyle \mu _{N}} is smaller than μ B {\displaystyle \mu _{B}} by the ratio of the electron mass to the proton mass.
The spinning electron model here is analogous to a gyroscope. For any rotating body the rate of change of the angular momentum equals the applied torque : =. Note as an example the precession of a gyroscope. The earth's gravitational attraction applies a force or torque to the gyroscope in the vertical direction, and the angular momentum vector ...