Ads
related to: common monomial factor word problem
Search results
Results From The WOW.Com Content Network
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
Then the word problem in is solvable: given two words , in the generators of , write them as words in and compare them using the solution to the word problem in . It is easy to think that this demonstrates a uniform solution of the word problem for the class K {\displaystyle K} (say) of finitely generated groups that can be embedded in G ...
Degree: The maximum exponents among the monomials. Factor: An expression being multiplied. Linear factor: A factor of degree one. Coefficient: An expression multiplying one of the monomials of the polynomial. Root (or zero) of a polynomial: Given a polynomial p(x), the x values that satisfy p(x) = 0 are called roots (or zeroes) of the polynomial p.
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term.Two definitions of a monomial may be encountered: A monomial, also called a power product or primitive monomial, [1] is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. [2]
In group theory, a word is any written product of group elements and their inverses. For example, if x , y and z are elements of a group G , then xy , z −1 xzz and y −1 zxx −1 yz −1 are words in the set { x , y , z }.
Moreover, the univariate polynomial h(x 0) of the RUR may be factorized, and this gives a RUR for every irreducible factor. This provides the prime decomposition of the given ideal (that is the primary decomposition of the radical of the ideal). In practice, this provides an output with much smaller coefficients, especially in the case of ...
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
Many word problems are undecidable based on the Post correspondence problem. Any two homomorphisms, with a common domain and a common codomain form an instance of the Post correspondence problem, which asks whether there exists a word in the domain such that () = (). Post proved that this problem is undecidable; consequently, any word problem ...