Search results
Results From The WOW.Com Content Network
Since probability tables cannot be printed for every normal distribution, as there are an infinite variety of normal distributions, it is common practice to convert a normal to a standard normal (known as a z-score) and then use the standard normal table to find probabilities. [2]
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
Particularly in applications where the name "normal score" is used, there is usually a presumption that the value can be referred to a table of standard normal probabilities as a means of providing a significance test of some hypothesis, such as a difference in means. [citation needed]
This page was last edited on 21 February 2007, at 16:55 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
50 + 21.063 × z, where z is the standard score or "z-score", i.e. z is how many standard deviations above the mean the raw score is ( z is negative if the raw score is below the mean). The reason for the choice of the number 21.06 is to bring about the following result: If the scores are normally distributed (i.e. they follow the "bell-shaped ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Every normal distribution is a version of the standard normal distribution, whose domain has been stretched by a factor (the standard deviation) and then translated by (the mean value): f ( x ∣ μ , σ 2 ) = 1 σ φ ( x − μ σ ) . {\displaystyle f(x\mid \mu ,\sigma ^{2})={\frac {1}{\sigma }}\varphi \left({\frac {x-\mu }{\sigma }}\right)\,.}
This page was last edited on 23 December 2019, at 16:05 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.