Search results
Results From The WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
8 Ways of defining sets/Relation to descriptive set theory. 9 More general objects still called sets. 10 See also. Toggle the table of contents. List of types of sets.
In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. [5] A set may have a finite number of elements or be an infinite set.
A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [5] Since sets are objects, the membership relation can relate sets as well, i.e., sets themselves can be members of other sets. A derived binary relation between two sets is the subset relation, also called set inclusion.
These are examples of an extremely important and powerful property of set algebra, namely, the principle of duality for sets, which asserts that for any true statement about sets, the dual statement obtained by interchanging unions and intersections, interchanging and and reversing inclusions is also true.
A more elaborate example (involving two infinite sets) is: A = {x is an even integer larger than 1} B = {x is an odd integer larger than 1} = {,,,,, …} As another example, the number 9 is not contained in the union of the set of prime numbers {2, 3, 5, 7, 11, ...} and the set of even numbers {2, 4, 6, 8, 10, ...}, because 9 is neither prime ...
The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. [5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3.
Euler diagram illustrating that the set of "animals with four legs" is a subset of "animals", but the set of "minerals" is a disjoint set (it has no members in common) with "animals" Euler diagram showing the relationships between different Solar System objects