When.com Web Search

  1. Ad

    related to: length of side triangle calculator with two congruent

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle. Since both triangles' sides are the same lengths a, b and c, the triangles are congruent and

  3. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    If two triangles satisfy the SSA condition and the length of the side opposite the angle is greater than or equal to the length of the adjacent side (SSA, or long side-short side-angle), then the two triangles are congruent. The opposite side is sometimes longer when the corresponding angles are acute, but it is always longer when the ...

  4. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    Consider a triangle ABC.Let the angle bisector of angle ∠ A intersect side BC at a point D between B and C.The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC:

  5. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    If the internal bisector of angle A in triangle ABC has length and if this bisector divides the side opposite A into segments of lengths m and n, then [3]: p.70 + = where b and c are the side lengths opposite vertices B and C; and the side opposite A is divided in the proportion b:c.

  6. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. A side and the two angles adjacent to it (ASA) A side, the angle opposite to it and an angle adjacent to it (AAS). For all cases in the plane, at least one of the side lengths must be specified.

  7. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    Two triangles are congruent if and only if they correspond under a finite product of line reflections. Two triangles with corresponding angles equal are congruent (i.e., all similar triangles are congruent). Hyperbolic triangles have some properties that are the opposite of the properties of triangles in spherical or elliptic geometry:

  8. Corresponding sides and corresponding angles - Wikipedia

    en.wikipedia.org/wiki/Corresponding_sides_and...

    The orange and green quadrilaterals are congruent; the blue one is not congruent to them. Congruence between the orange and green ones is established in that side BC corresponds to (in this case of congruence, equals in length) JK, CD corresponds to KL, DA corresponds to LI, and AB corresponds to IJ, while angle ∠C corresponds to (equals) angle ∠K, ∠D corresponds to ∠L, ∠A ...

  9. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.