When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...

  3. Dichotomy - Wikipedia

    en.wikipedia.org/wiki/Dichotomy

    mutually exclusive: nothing can belong simultaneously to both parts. If there is a concept A, and it is split into parts B and not-B, then the parts form a dichotomy: they are mutually exclusive, since no part of B is contained in not-B and vice versa, and they are jointly exhaustive, since they cover all of A, and together again give A.

  4. Collectively exhaustive events - Wikipedia

    en.wikipedia.org/wiki/Collectively_exhaustive_events

    The events 1 and 6 are mutually exclusive but not collectively exhaustive. The events "even" (2,4 or 6) and "not-6" (1,2,3,4, or 5) are also collectively exhaustive but not mutually exclusive. In some forms of mutual exclusion only one event can ever occur, whether collectively exhaustive or not.

  5. MECE principle - Wikipedia

    en.wikipedia.org/wiki/MECE_principle

    The MECE principle (mutually exclusive and collectively exhaustive) is a grouping principle for separating a set of items into subsets that are mutually exclusive (ME) and collectively exhaustive (CE). [1]

  6. Law of noncontradiction - Wikipedia

    en.wikipedia.org/wiki/Law_of_noncontradiction

    In logic, the law of non-contradiction (LNC) (also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the same time, e. g. the two propositions "the house is white" and "the house is not white" are mutually exclusive.

  7. Complementary event - Wikipedia

    en.wikipedia.org/wiki/Complementary_event

    In probability theory, the complement of any event A is the event [not A], i.e. the event that A does not occur. [1] The event A and its complement [not A] are mutually exclusive and exhaustive. Generally, there is only one event B such that A and B are both mutually exclusive and exhaustive; that event is the complement of A.

  8. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The law of total probability is [1] a theorem that states, in its discrete case, if {: =,,, …} is a finite or countably infinite set of mutually exclusive and collectively exhaustive events, then for any event

  9. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive events (events with no common results, such as the events {1,6}, {3}, and {2,4}), the probability that at least one of the events will occur is given by the sum of the probabilities of all the individual events.