When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy of an object is equal to the work, force times displacement , needed to achieve its stated velocity. Having gained this energy during its acceleration, the mass maintains this kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest.

  3. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The energy required to lift an apple up 1 m, assuming the apple has a mass of 101.97 g. The heat required to raise the temperature of 0.239 g of water from 0 °C to 1 °C. [15] The kinetic energy of a 50 kg human moving very slowly (0.2 m/s or 0.72 km/h). The kinetic energy of a 56 g tennis ball moving at 6 m/s (22 km/h). [16]

  4. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    By dividing a particle's kinetic energy in electronvolts by the fundamental constant c (the speed of light), one can describe the particle's momentum in units of eV/c. [5] In natural units in which the fundamental velocity constant c is numerically 1, the c may informally be omitted to express momentum using the unit electronvolt.

  5. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.

  6. Orders of magnitude (energy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(energy)

    Kinetic energy of a regulation baseball thrown at the speed of the Oh-My-God particle, itself a cosmic ray proton with the kinetic energy of a baseball thrown at 60 mph (~50 J). [246] 10 28: 3.8×10 28 J: Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth) [247] [248] 7×10 28 J

  7. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  8. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    Energy is a scalar quantity, and the mechanical energy of a system is the sum of the potential energy (which is measured by the position of the parts of the system) and the kinetic energy (which is also called the energy of motion): [1] [2] = +

  9. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.