When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stream function - Wikipedia

    en.wikipedia.org/wiki/Stream_function

    A shift in the position of the reference point effectively adds a constant (for steady flow) or a function solely of time (for nonsteady flow) to the stream function at every point . The shift in the stream function, Δ ψ {\displaystyle \Delta \psi } , is equal to the total volumetric flux, per unit thickness, through the surface that extends ...

  3. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    The use of the flow coefficient offers a standard method of comparing valve capacities and sizing valves for specific applications that is widely accepted by industry. The general definition of the flow coefficient can be expanded into equations modeling the flow of liquids, gases and steam using the discharge coefficient.

  4. Stream power - Wikipedia

    en.wikipedia.org/wiki/Stream_power

    It can be derived by the fact that if the water is not accelerating and the river cross-section stays constant (generally good assumptions for an averaged reach of a stream over a modest distance), all of the potential energy lost as the water flows downstream must be used up in friction or work against the bed: none can be added to kinetic energy.

  5. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    Choked flow is a limiting condition where the mass flow cannot increase with a further decrease in the downstream pressure environment for a fixed upstream pressure and temperature. For homogeneous fluids, the physical point at which the choking occurs for adiabatic conditions is when the exit plane velocity is at sonic conditions; i.e., at a ...

  6. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    [4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.

  7. Losses in steam turbines - Wikipedia

    en.wikipedia.org/wiki/Losses_in_steam_turbines

    The steam passing through the last stage of turbine has a high velocity and a large moisture content. The liquid particles have lesser velocity than that of vapor particles; hence, the liquid particles obstruct the flow of vapor particles in the last stage of the turbine, and therefore, a part of kinetic energy of the steam is lost.

  8. Shear velocity - Wikipedia

    en.wikipedia.org/wiki/Shear_velocity

    Shear velocity also helps in thinking about the rate of shear and dispersion in a flow. Shear velocity scales well to rates of dispersion and bedload sediment transport. A general rule is that the shear velocity is between 5% and 10% of the mean flow velocity. For river base case, the shear velocity can be calculated by Manning's equation.

  9. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.