Search results
Results From The WOW.Com Content Network
The "base radius" of a circular cone is the radius of its base; often this is simply called the radius of the cone. The aperture of a right circular cone is the maximum angle between two generatrix lines; if the generatrix makes an angle θ to the axis, the aperture is 2θ.
The blue area above the x-axis may be specified as positive area, while the yellow area below the x-axis is the negative area. The integral of a real function can be imagined as the signed area between the x {\displaystyle x} -axis and the curve y = f ( x ) {\displaystyle y=f(x)} over an interval [ a , b ].
The equation can be written in parametric form using the trigonometric functions sine and cosine as = + , = + , where t is a parametric variable in the range 0 to 2 π, interpreted geometrically as the angle that the ray from (a, b) to (x, y) makes with the positive x axis.
In higher dimensions the area of a polygon can be calculated from its vertices using the exterior algebra form of the Shoelace formula (e.g. in 3d, the sum of successive cross products): = ‖ = + ‖ (when the vertices are not coplanar this computes the vector area enclosed by the loop, i.e. the projected area or "shadow" in the plane in which ...
where A is the area of a squircle with minor radius r, is the gamma function. A = ( k + 1 ) ( k + 2 ) π r 2 {\displaystyle A=(k+1)(k+2)\pi r^{2}} where A is the area of an epicycloid with the smaller circle of radius r and the larger circle of radius kr ( k ∈ N {\displaystyle k\in \mathbb {N} } ), assuming the initial point lies on the ...
Having radius r and altitude (height) h, the surface area of a right circular cylinder, oriented so that its axis is vertical, consists of three parts: the area of the top base: πr 2; the area of the bottom base: πr 2; the area of the side: 2πrh; The area of the top and bottom bases is the same, and is called the base area, B.
In speaking about these processes, the measure (length or area) of a figure's base is often referred to as its "base." By this usage, the area of a parallelogram or the volume of a prism or cylinder can be calculated by multiplying its "base" by its height; likewise, the areas of triangles and the volumes of cones and pyramids are fractions of ...
Since the equation of this circle is given in Cartesian coordinates by + =, the question is equivalently asking how many pairs of integers m and n there are such that m 2 + n 2 ≤ r 2 . {\displaystyle m^{2}+n^{2}\leq r^{2}.}