Search results
Results From The WOW.Com Content Network
The largest ocean current is the Antarctic Circumpolar Current (ACC), a wind-driven current which flows clockwise uninterrupted around Antarctica. The ACC connects all the ocean basins together, and also provides a link between the atmosphere and the deep ocean due to the way water upwells and downwells on either side of it.
The excess water flows out at a right angle to the beach, in a tight current called the "neck" of the rip. The "neck" is where the flow is most rapid. When the water in the rip current reaches outside of the lines of breaking waves, the flow disperses sideways, loses power, and dissipates in what is known as the "head" of the rip.
A man standing next to large ocean waves at Porto Covo, Portugal Video of large waves from Hurricane Marie along the coast of Newport Beach, California. In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface.
An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences.
The ocean currents surrounding the Philippines: (1) Mindanao Current, (2) Mindanao Undercurrent (dotted to indicate that it is deeper than the other currents shown), (3) Mindanao Eddy, (4) North Equatorial Current, (5) Kuroshio current, (6) the beginnings and feeder currents of the Kuroshio (gradated to indicate that it strengthens to the North), (7) Indonesian Throughflow, and (8) North ...
The current varies spatially as well as temporally, dependent upon the flow volume of water, stream gradient, and channel geometry. In tidal zones, the current and streams may reverse on the flood tide before resuming on the ebb tide. On a global scale, wind and the rotation of the earth greatly influence the flow of ocean currents. [1]
A geostrophic current may also be thought of as a rotating shallow water wave with a frequency of zero. The principle of geostrophy or geostrophic balance is useful to oceanographers because it allows them to infer ocean currents from measurements of the sea surface height (by combined satellite altimetry and gravimetry ) or from vertical ...
Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.