Search results
Results From The WOW.Com Content Network
Just as the usual attenuation coefficient measures the number of e-fold reductions that occur over a unit length of material, this coefficient measures how many 10-fold reductions occur: a decadic coefficient of 1 m −1 means 1 m of material reduces the radiation once by a factor of 10.
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
Attenuation decreases the intensity of electromagnetic radiation due to absorption or scattering of photons. Attenuation does not include the decrease in intensity due to inverse-square law geometric spreading. Therefore, calculation of the total change in intensity involves both the inverse-square law and an estimation of attenuation over the ...
Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).
An overview of absorption of electromagnetic radiation.This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines).
A material's absorption spectrum is the fraction of incident radiation absorbed by the material over a range of frequencies of electromagnetic radiation. The absorption spectrum is primarily determined [2] [3] [4] by the atomic and molecular composition of the material.
This gamma LET has little relation to the attenuation rate of the beam, but it may have some correlation to the microscopic defects produced in the absorber. Even a monoenergetic gamma beam will produce a spectrum of electrons, and each secondary electron will have a variable LET as it slows down, as discussed above. The "gamma LET" is ...
This radiation is absorbed by molecular vibrations, where the different atoms in a molecule vibrate around their equilibrium positions. This range is sometimes called the fingerprint region, since the mid-infrared absorption spectrum of a compound is very specific for that compound. Near-infrared, from 120 THz to 400 THz (2,500–750 nm ...