Search results
Results From The WOW.Com Content Network
The pore space of soil contains the liquid and gas phases of soil, i.e., everything but the solid phase that contains mainly minerals of varying sizes as well as organic compounds. In order to understand porosity better a series of equations have been used to express the quantitative interactions between the three phases of soil.
The samples' total volume and pore space volume were measured in order to calculate the porosities. Measuring pore space volume. A helium pyrometer was used to calculate the volume of the pores and relied on Boyle's law. (P 1 V 1 =P 2 V 2) and helium gas, which easily passes through tiny holes and is inert, to identify the solid fraction of a ...
Porosity is the ratio of pore volume to its total volume. Porosity is controlled by: rock type, pore distribution, cementation, diagenetic history and composition. Porosity is not controlled by grain size, as the volume of between-grain space is related only to the method of grain packing.
Pore size variation also compartmentalizes the soil pore space such that many microbial and faunal organisms are not in direct competition with one another, which may explain not only the large number of species present, but the fact that functionally redundant organisms (organisms with the same ecological niche) can co-exist within the same soil.
The traditional Petroleum Engineering and core analysis definition of effective porosity is the sum of the interconnected pore space—that is, excluding isolated pores. [11] Therefore, in practice, for the vast majority of sedimentary rocks, this definition of effective porosity equates to total porosity.
The pore space allows for the infiltration and movement of air and water, both of which are critical for life existing in soil. [34] Compaction, a common problem with soils, reduces this space, preventing air and water from reaching plant roots and soil organisms. [35]
Soil structure describes the arrangement of the solid parts of the soil and of the pore spaces located between them (Marshall & Holmes, 1979). [1] Aggregation is the result of the interaction of soil particles through rearrangement, flocculation and cementation.
In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. [1]