When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Decomposition of time series - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_time_series

    The decomposition of time series is a statistical task that deconstructs a time series into several components, each representing one of the underlying categories of patterns. [1] There are two principal types of decomposition, which are outlined below.

  3. X-13ARIMA-SEATS - Wikipedia

    en.wikipedia.org/wiki/X-13ARIMA-SEATS

    In this decomposition, is the trend (or the "trend cycle" because it also includes cyclical movements such as business cycles) component, is the seasonal component, and is the irregular (or random) component. The goal is to estimate each of the three components and then remove the seasonal component from the time series, producing a seasonally ...

  4. Error correction model - Wikipedia

    en.wikipedia.org/wiki/Error_correction_model

    In order to still use the Box–Jenkins approach, one could difference the series and then estimate models such as ARIMA, given that many commonly used time series (e.g. in economics) appear to be stationary in first differences. Forecasts from such a model will still reflect cycles and seasonality that are present in the data.

  5. Wold's theorem - Wikipedia

    en.wikipedia.org/wiki/Wold's_theorem

    In statistics, Wold's decomposition or the Wold representation theorem (not to be confused with the Wold theorem that is the discrete-time analog of the Wiener–Khinchin theorem), named after Herman Wold, says that every covariance-stationary time series can be written as the sum of two time series, one deterministic and one stochastic.

  6. Variance decomposition of forecast errors - Wikipedia

    en.wikipedia.org/wiki/Variance_decomposition_of...

    =, where is a lower triangular matrix obtained by a Cholesky decomposition of such that = ′, where is the covariance matrix of the errors Φ i = J A i J ′ , {\displaystyle \Phi _{i}=JA^{i}J',} where J = [ I k 0 … 0 ] , {\displaystyle J={\begin{bmatrix}\mathbf {I} _{k}&0&\dots &0\end{bmatrix}},} so that J {\displaystyle J} is a k ...

  7. Hodrick–Prescott filter - Wikipedia

    en.wikipedia.org/wiki/Hodrick–Prescott_filter

    A working paper by Robert J. Hodrick titled "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data" [10] examines whether the proposed alternative approach of James D. Hamilton is actually better than the HP filter at extracting the cyclical component of several simulated time series calibrated to approximate U.S. real GDP ...

  8. Bayesian structural time series - Wikipedia

    en.wikipedia.org/.../Bayesian_structural_time_series

    The model consists of three main components: Kalman filter. The technique for time series decomposition. In this step, a researcher can add different state variables: trend, seasonality, regression, and others. Spike-and-slab method. In this step, the most important regression predictors are selected. Bayesian model averaging.

  9. Berlin procedure - Wikipedia

    en.wikipedia.org/wiki/Berlin_procedure

    The Berlin procedure (BV) is a mathematical procedure for time series decomposition and seasonal adjustment of monthly and quarterly economic time series. The mathematical foundations of the procedure were developed in 1960's at Technische Universität Berlin and the German Institute for Economic Research (DIW).