Search results
Results From The WOW.Com Content Network
In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.
In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...
During the progress, a chromosome is obtained from a hybrid cell and cut at rare restriction site to produce large fragments. The fragments will be separated by size and undergo hybridization, forming the macrorestriction map and different contiguous blocks (i.e. contigs). To ensure the fragments are linked, linking clones with the same rare ...
Bent's rule can be extended to rationalize the hybridization of nonbonding orbitals as well. On the one hand, a lone pair (an occupied nonbonding orbital) can be thought of as the limiting case of an electropositive substituent, with electron density completely polarized towards the central atom.
Hybridization (or hybridisation) may refer to: Hybridization (biology) , the process of combining different varieties of organisms to create a hybrid Orbital hybridization , in chemistry, the mixing of atomic orbitals into new hybrid orbitals
In its simplest form, the model contains a term describing the kinetic energy of the conduction electrons, a two-level term with an on-site Coulomb repulsion that models the impurity energy levels, and a hybridization term that couples conduction and impurity orbitals. For a single impurity, the Hamiltonian takes the form [1]
Fluorescence in situ hybridization (FISH) is a laboratory method used to detect and locate a DNA sequence, often on a particular chromosome. [4]In the 1960s, researchers Joseph Gall and Mary Lou Pardue found that molecular hybridization could be used to identify the position of DNA sequences in situ (i.e., in their natural positions within a chromosome).
In the hybridization-ligation assay [4] [5] a template probe replaces the capture probe in the sandwich assay for immobilization to the solid support. The template probe is fully complementary to the oligonucleotide analyte and is intended to serve as a substrate for T4 DNA ligase-mediated ligation.