When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    The following outline is provided as an overview of and topical guide to regression analysis: Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables ( Y ) and one or more independent variables ( X ).

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to infer causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal ...

  4. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    Python has the statsmodelsS package which includes many models and functions for time series analysis, including ARMA. Formerly part of the scikit-learn library, it is now stand-alone and integrates well with Pandas. PyFlux has a Python-based implementation of ARIMAX models, including Bayesian ARIMAX models.

  5. Symbolic regression - Wikipedia

    en.wikipedia.org/wiki/Symbolic_regression

    Expression tree as it can be used in symbolic regression to represent a function. Symbolic regression (SR) is a type of regression analysis that searches the space of mathematical expressions to find the model that best fits a given dataset, both in terms of accuracy and simplicity.

  6. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  7. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.

  8. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  9. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear regression was the first type of regression analysis to be studied rigorously, and to be used extensively in practical applications. [4] This is because models which depend linearly on their unknown parameters are easier to fit than models which are non-linearly related to their parameters and because the statistical properties of the ...