Search results
Results From The WOW.Com Content Network
Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .
Thus, we use more complex relations such as Maxwell relations, the Clapeyron equation, and the Mayer relation. Maxwell relations in thermodynamics are critical because they provide a means of simply measuring the change in properties of pressure, temperature, and specific volume, to determine a change in entropy. Entropy cannot be measured ...
The discontinuity in , and other properties, e.g. internal energy, , and entropy,, of the substance, is called a first order phase transition. [12] [13] In order to specify the unique experimentally observed pressure, (), at which it occurs another thermodynamic condition is required, for from Fig.1 it could clearly occur for any pressure in the range .
The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics.
Antoine equation; Bejan number; Bowen ratio; Bridgman's equations; Clausius–Clapeyron relation; Departure functions; Duhem–Margules equation; Ehrenfest equations; Gibbs–Helmholtz equation; Phase rule; Kopp's law; Noro–Frenkel law of corresponding states; Onsager reciprocal relations; Stefan number; Thermodynamics; Timeline of ...
The placement and relation among the variables serves as a key to recall the relations they constitute. A mnemonic used by students to remember the Maxwell relations (in thermodynamics ) is " G ood P hysicists H ave S tudied U nder V ery F ine T eachers", which helps them remember the order of the variables in the square, in clockwise direction.
A thermodynamic potential (or more accurately, a thermodynamic potential energy) [1] [2] is a scalar quantity used to represent the thermodynamic state of a system.Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings.
The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Maxwell [1] for dilute gases and Josef Stefan [2] for liquids. The Maxwell–Stefan equation is [3 ...