Search results
Results From The WOW.Com Content Network
Pages in category "Theorems about triangles" The following 29 pages are in this category, out of 29 total. This list may not reflect recent changes. A.
Symphonic theorem (triangle geometry) Synge's theorem (Riemannian geometry) Sz.-Nagy's dilation theorem (operator theory) Szegő limit theorems (mathematical analysis) Szemerédi's theorem (combinatorics) Szemerédi–Trotter theorem (combinatorics) Szpilrajn extension theorem (axiom of choice)
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle.. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle.
Pages in category "Theorems about triangles and circles" The following 18 pages are in this category, out of 18 total. This list may not reflect recent changes. C.
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
The following sample of theorems gives a flavor of the new results discovered by Discoverer. Theorem 6.1 Let P and Q are points, neither lying on a sideline of triangle ABC. If P and Q are isogonal conjugates with respect to ABC, then the Ceva product of their complements lies on the Kiepert hyperbola. Theorem 9.1.