Search results
Results From The WOW.Com Content Network
It's good to know how currents are formed in the ocean, as they can be quite dangerous!
Ocean surface currents Distinctive white lines trace the flow of surface currents around the world. Visualization showing global ocean currents from January 1, 2010, to December 31, 2012, at sea level, then at 2,000 m (6,600 ft) below sea level Animation of circulation around ice shelves of Antarctica
The fields inside the surface are referred as null fields. Thus, the surface currents are chosen as to sustain the external fields in the original problem. Alternatively, Love equivalent problem for field distributions inside the surface can be formulated: this requires the negative of surface currents for the external radiation case.
A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. Thermohaline circulation. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.
A subsurface ocean current is an oceanic current that runs beneath surface currents. [1] Examples include the Equatorial Undercurrents of the Pacific, Atlantic, and Indian Oceans, the California Undercurrent, [ 2 ] and the Agulhas Undercurrent, [ 3 ] the deep thermohaline circulation in the Atlantic, and bottom gravity currents near Antarctica.
A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. The NADW is not the deepest water layer in the Atlantic Ocean; the Antarctic bottom water (AABW) is always the densest, deepest ocean layer in any basin deeper than 4,000 metres (2.5 mi). [27]
A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]
A geostrophic current is an oceanic current in which the pressure gradient force is balanced by the Coriolis effect. The direction of geostrophic flow is parallel to the isobars , with the high pressure to the right of the flow in the Northern Hemisphere , and the high pressure to the left in the Southern Hemisphere .