When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    In computing the product of the last two factors, the imaginary parts cancel, and we get ( x − 3 ) ( x 2 − 4 x + 29 ) . {\displaystyle (x-3)(x^{2}-4x+29).} The non-real factors come in pairs which when multiplied give quadratic polynomials with real coefficients.

  3. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.

  4. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    Geometric representation (Argand diagram) of and its conjugate ¯ in the complex plane.The complex conjugate is found by reflecting across the real axis.. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign.

  5. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding the root of a linear polynomial (degree one) is easy and needs only one division: the general equation + = has solution = /. For quadratic polynomials (degree two), the quadratic formula produces a solution, but its numerical evaluation may require some care for ensuring numerical stability.

  6. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    In elementary mathematics a polynomial and its associated polynomial function are rarely distinguished and the terms quadratic function and quadratic polynomial are nearly synonymous and often abbreviated as quadratic. A quadratic polynomial with two real roots (crossings of the x axis). The graph of a real single-variable quadratic function is ...

  7. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    A quadratic with two real roots, for example, will have exactly two angles that satisfy the above conditions. For complex roots, one must also find a series of similar triangles, but with the vertices of the root path displaced from the polynomial path by a distance equal to the imaginary part of the root. In this case, the root path will not ...

  8. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    If the discriminant of such a polynomial is negative, then both roots of the quadratic equation have imaginary parts. In particular, if b and c are real numbers and b 2 − 4 c < 0, all the convergents of this continued fraction "solution" will be real numbers, and they cannot possibly converge to a root of the form u + iv (where v ≠ 0 ...

  9. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    The solution in radicals (without trigonometric functions) of a general cubic equation, when all three of its roots are real numbers, contains the square roots of negative numbers, a situation that cannot be rectified by factoring aided by the rational root test, if the cubic is irreducible; this is the so-called casus irreducibilis ...