Search results
Results From The WOW.Com Content Network
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution [1]) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified.
Wikidata item; Appearance. move to sidebar hide. Help ... Pages in category "Continuous distributions" The following 183 pages are in this category, out of 183 total.
Every absolutely continuous distribution is a continuous distribution but the inverse is not true, there exist singular distributions, which are neither absolutely continuous nor discrete nor a mixture of those, and do not have a density. An example is given by the Cantor distribution.
Examples of continuous distributions that are infinitely divisible are the normal distribution, the Cauchy distribution, the Lévy distribution, and all other members of the stable distribution family, as well as the Gamma distribution, the chi-square distribution, the Wald distribution, the Log-normal distribution [2] and the Student's t-distribution.
Continuous distributions (3 ... Pages in category "Probability distributions" The following 25 pages are in this category, out of 25 total. This list may not reflect ...
As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution.
A Pearson density p is defined to be any valid solution to the differential equation (cf. Pearson 1895, p. 381) ′ () + + + + = ()with: =, = = +, =. According to Ord, [3] Pearson devised the underlying form of Equation (1) on the basis of, firstly, the formula for the derivative of the logarithm of the density function of the normal distribution (which gives a linear function) and, secondly ...