When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left.

  3. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    With the addition of an OR gate to combine their carry outputs, two half adders can be combined to make a full adder. [2] The half adder adds two input bits and generates a carry and sum, which are the two outputs of a half adder. The input variables of a half adder are called the augend and addend bits. The output variables are the sum and carry.

  4. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    Add a half adder for weight 2, outputs: 1 weight-2 wire, 1 weight-4 wire; Add a full adder for weight 4, outputs: 1 weight-4 wire, 1 weight-8 wire; Add a full adder for weight 8, and pass the remaining wire through, outputs: 2 weight-8 wires, 1 weight-16 wire; Add a full adder for weight 16, outputs: 1 weight-16 wire, 1 weight-32 wire

  5. Carry-select adder - Wikipedia

    en.wikipedia.org/wiki/Carry-select_adder

    A conditional sum adder [3] is a recursive structure based on the carry-select adder. In the conditional sum adder, the MUX level chooses between two n/2-bit inputs that are themselves built as conditional-sum adder. The bottom level of the tree consists of pairs of 2-bit adders (1 half adder and 3 full adders) plus 2 single-bit multiplexers.

  6. Carry-skip adder - Wikipedia

    en.wikipedia.org/wiki/Carry-skip_adder

    A carry-skip adder [nb 1] (also known as a carry-bypass adder) is an adder implementation that improves on the delay of a ripple-carry adder with little effort compared to other adders. The improvement of the worst-case delay is achieved by using several carry-skip adders to form a block-carry-skip adder.

  7. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    For speed, shift-and-add multipliers require a fast adder (something faster than ripple-carry). [13] A "single cycle" multiplier (or "fast multiplier") is pure combinational logic. In a fast multiplier, the partial-product reduction process usually contributes the most to the delay, power, and area of the multiplier. [7]

  8. Carry-lookahead adder - Wikipedia

    en.wikipedia.org/wiki/Carry-lookahead_adder

    A partial full adder, with propagate and generate outputs. Logic gate implementation of a 4-bit carry lookahead adder. A block diagram of a 4-bit carry lookahead adder. For each bit in a binary sequence to be added, the carry-lookahead logic will determine whether that bit pair will generate a carry or propagate a carry.

  9. Fredkin gate - Wikipedia

    en.wikipedia.org/wiki/Fredkin_gate

    Three-bit full adder (add with carry) using five Fredkin gates. Three-bit full adder (add with carry) using five Fredkin gates. The "garbage" output bit g is (p NOR q) if r = 0, and (p NAND q) if r = 1. Inputs on the left, including two constants, go through three gates to quickly determine the parity.