When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    A variation of the Theil–Sen estimator, the repeated median regression of Siegel (1982), determines for each sample point (x i, y i), the median m i of the slopes (y j − y i)/(x j − x i) of lines through that point, and then determines the overall estimator as the median of these medians.

  3. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    Deming regression (total least squares) also finds a line that fits a set of two-dimensional sample points, but (unlike ordinary least squares, least absolute deviations, and median slope regression) it is not really an instance of simple linear regression, because it does not separate the coordinates into one dependent and one independent ...

  4. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Recall that M = I − P where P is the projection onto linear space spanned by columns of matrix X. By properties of a projection matrix, it has p = rank(X) eigenvalues equal to 1, and all other eigenvalues are equal to 0. Trace of a matrix is equal to the sum of its characteristic values, thus tr(P) = p, and tr(M) = n − p. Therefore,

  5. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  6. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression , which predicts multiple correlated dependent variables rather than a single dependent variable.

  7. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    The true distribution is then approximated by a linear regression, and the best estimators are obtained in closed form as ^ = ((~) ~) (~) (¯), where denotes the template matrix with the values of the known or previously determined model for any of the reference values β, are the random variables (e.g. a measurement), and the matrix ~ and the ...

  8. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    In statistics and in particular in regression analysis, leverage is a measure of how far away the independent variable values of an observation are from those of the other observations. High-leverage points , if any, are outliers with respect to the independent variables .

  9. Scheffé's method - Wikipedia

    en.wikipedia.org/wiki/Scheffé's_method

    That the result based on is wrong is readily seen by considering =, as in a standard simple linear regression. That formula would then reduce to one with the usual t {\textstyle t} -distribution, which is appropriate for predicting/estimating for a single value of the independent variable, not for constructing a confidence band for a range of ...