When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  3. Fatigue limit - Wikipedia

    en.wikipedia.org/wiki/Fatigue_limit

    Typical values of the limit for steels are one half the ultimate tensile strength, to a maximum of 290 MPa (42 ksi). For iron, aluminium, and copper alloys, S e {\displaystyle S_{e}} is typically 0.4 times the ultimate tensile strength.

  4. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    This region starts as the stress goes beyond the yielding point, reaching a maximum at the ultimate strength point, which is the maximal stress that can be sustained and is called the ultimate tensile strength (UTS). In this region, the stress mainly increases as the material elongates, except that for some materials such as steel, there is a ...

  5. Necking (engineering) - Wikipedia

    en.wikipedia.org/wiki/Necking_(engineering)

    It also corresponds to the “strength” (ultimate tensile stress), at least for metals that do neck (which covers the majority of “engineering” metals). On the other hand, the peak in a nominal stress-strain curve is commonly a fairly flat plateau, rather than a sharp maximum, so accurate assessment of the strain at the onset of necking ...

  6. Tensile testing - Wikipedia

    en.wikipedia.org/wiki/Tensile_testing

    Tensile testing, also known as tension testing, [1] is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. [2]

  7. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Properties that are directly measured via a tensile test are the ultimate tensile strength, maximum elongation and reduction in cross-section area. From these measurements, properties such as Young's modulus , Poisson's ratio , yield strength , and the strain-hardening characteristics of the sample can be determined.

  8. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [1] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.

  9. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]