When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  3. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...

  4. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    Then f (−1) = f (1), but there is no c between −1 and 1 for which the f ′(c) is zero. This is because that function, although continuous, is not differentiable at x = 0. The derivative of f changes its sign at x = 0, but without attaining the value 0.

  5. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.

  6. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A square wave (represented as the blue dot) is approximated by its sixth partial sum (represented as the purple dot), formed by summing the first six terms (represented as arrows) of the square wave's Fourier series. Each arrow starts at the vertical sum of all the arrows to its left (i.e. the previous partial sum).

  7. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Inspired by correspondence in Nature between Michelson and A. E. H. Love about the convergence of the Fourier series of the square wave function, J. Willard Gibbs published a note in 1898 pointing out the important distinction between the limit of the graphs of the partial sums of the Fourier series of a sawtooth wave and the graph of the limit ...

  8. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    The function f defined by f(0) = 0 and f(x) = x 3/2 sin(1/x) for 0<x≤1 gives an example of a function that is differentiable on a compact set while not locally Lipschitz because its derivative function is not bounded. See also the first property below.

  9. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    This can be seen graphically as a "kink" or a "cusp" in the graph at =. Even a function with a smooth graph is not differentiable at a point where its tangent is vertical: For instance, the function given by () = / is not differentiable at =. In summary, a function that has a derivative is continuous, but there are continuous functions that do ...