Ads
related to: born exponents examplesstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
n is the Born exponent (a number between 5 and 12, determined experimentally by measuring the compressibility of the solid, or derived theoretically). [6] The Born–Landé equation above shows that the lattice energy of a compound depends principally on two factors:
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound. It is a refinement of the Born–Landé equation by using an improved repulsion term.
In the base ten number system, integer powers of 10 are written as the digit 1 followed or preceded by a number of zeroes determined by the sign and magnitude of the exponent. For example, 10 3 = 1000 and 10 −4 = 0.0001. Exponentiation with base 10 is used in scientific notation to denote large or small numbers.
Approximating natural exponents (log base e) Artin–Hasse exponential; Bacterial growth; Baker–Campbell–Hausdorff formula; Cell growth; Barometric formula; Beer–Lambert law; Characterizations of the exponential function; Catenary; Compound interest; De Moivre's formula; Derivative of the exponential map; Doléans-Dade exponential ...
The Born equation can be used for estimating the electrostatic component of Gibbs free energy of solvation of an ion. It is an electrostatic model that treats the solvent as a continuous dielectric medium (it is thus one member of a class of methods known as continuum solvation methods). It was derived by Max Born. [1] [2]
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3]