Search results
Results From The WOW.Com Content Network
Potassium iodide has the chemical formula K I. [8] Commercially it is made by mixing potassium hydroxide with iodine. [9] [10] Potassium iodide has been used medically since at least 1820. [11] It is on the World Health Organization's List of Essential Medicines. [12] Potassium iodide is available as a generic medication and over the counter. [13]
Similarly, solubilities in water of predominantly ionic iodides (e.g. potassium and calcium) are the greatest among ionic halides of that element, while those of covalent iodides (e.g. silver) are the lowest of that element. In particular, silver iodide is very insoluble in water and its formation is often used as a qualitative test for iodine. [7]
The difference is that molecular mass is the mass of one specific particle or molecule, while the molar mass is an average over many particles or molecules. The molar mass is an intensive property of the substance, that does not depend on the size of the sample. In the International System of Units (SI), the coherent unit of molar mass is kg ...
In mass spectrometry, the molecular mass of a small molecule is usually reported as the monoisotopic mass: that is, the mass of the molecule containing only the most common isotope of each element. This also differs subtly from the molecular mass in that the choice of isotopes is defined and thus is a single specific molecular mass out of the ...
Hydrolysis occurs only slowly in water forming arsenic trioxide and hydroiodic acid. The reaction proceeds via formation of arsenous acid which exists in equilibrium with hydroiodic acid. The aqueous solution is highly acidic, pH of 0.1N solution is 1.1. It decomposes to arsenic trioxide, elemental arsenic and iodine when heated in air at 200 °C.
potassium permanganate has a molar mass of 158.034(1) g mol −1, and reacts with five moles of electrons per mole of potassium permanganate, so its equivalent weight is 158.034(1) g mol −1 /5 eq mol −1 = 31.6068(3) g eq −1.
For example, in the molecules represented by CH 3 X, where X is a halide, the carbon-X bonds have strengths, or bond dissociation energies, of 115, 83.7, 72.1, and 57.6 kcal/mol for X = fluoride, chloride, bromide, and iodide, respectively. [2] Of the halides, iodide usually is the best leaving group.
The "2% free iodine" description is based on the quantity of elemental iodine, not sodium/potassium iodide. [citation needed] USP Strong Iodine Tincture is defined in the NF as containing in each 100 mL, 6.8 to 7.5 gram of iodine, and 4.7 to 5.5 gram of potassium iodide. Purified water is 50 mL and the balance is alcohol.