When.com Web Search

  1. Ad

    related to: differentiation worked examples

Search results

  1. Results From The WOW.Com Content Network
  2. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    One example of an optimization problem is: Find the shortest curve between two points on a surface, assuming that the curve must also lie on the surface. If the surface is a plane, then the shortest curve is a line. But if the surface is, for example, egg-shaped, then the shortest path is not immediately clear.

  3. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Figure 5: Example of how operator overloading could work Operator overloading is a possibility for source code written in a language supporting it. Objects for real numbers and elementary mathematical operations must be overloaded to cater for the augmented arithmetic depicted above.

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The process of finding a derivative is called differentiation. There are multiple different notations for differentiation, two of the most commonly used being Leibniz notation and prime notation. Leibniz notation, named after Gottfried Wilhelm Leibniz , is represented as the ratio of two differentials , whereas prime notation is written by ...

  5. Five-point stencil - Wikipedia

    en.wikipedia.org/wiki/Five-point_stencil

    An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".

  6. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if f {\displaystyle f} is a holomorphic function , real-valued on the real line, which can be evaluated at points in the complex plane near x {\displaystyle x} , then there are stable methods.

  7. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    An example of such is the moment generating function in probability theory, a variation of the Laplace transform, which can be differentiated to generate the moments of a random variable. Whether Leibniz's integral rule applies is essentially a question about the interchange of limits.

  8. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    Isaac Newton's notation for differentiation (also called the dot notation, fluxions, or sometimes, crudely, the flyspeck notation [12] for differentiation) places a dot over the dependent variable. That is, if y is a function of t, then the derivative of y with respect to t is

  9. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The integral of η V along a path is the work done against −V along that path. When n = 3 , in three-dimensional space, the exterior derivative of the 1 -form η V is the 2 -form d η V = ω curl ⁡ V . {\displaystyle d\eta _{V}=\omega _{\operatorname {curl} V}.}