Search results
Results From The WOW.Com Content Network
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
This is a table of orthonormalized spherical harmonics that employ the Condon-Shortley phase up to degree =. Some of these formulas are expressed in terms of the Cartesian expansion of the spherical harmonics into polynomials in x , y , z , and r .
In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
"x^y = y^x - commuting powers". Arithmetical and Analytical Puzzles. Torsten Sillke. Archived from the original on 2015-12-28. dborkovitz (2012-01-29). "Parametric Graph of x^y=y^x". GeoGebra. OEIS sequence A073084 (Decimal expansion of −x, where x is the negative solution to the equation 2^x = x^2)
X-Y tables, also known as cross working tables or coordinate tables, help provide horizontal motion for automated machinery such as assembly robots in manufacturing facilities. Robotic arms and other automated machinery have only a limited range of motion while their bases remain stationary; X-Y tables allow this basis to move horizontally ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The two rightmost columns indicate which irreducible representations describe the symmetry transformations of the three Cartesian coordinates (x, y and z), rotations about those three coordinates (R x, R y and R z), and functions of the quadratic terms of the coordinates(x 2, y 2, z 2, xy, xz, and yz).