Search results
Results From The WOW.Com Content Network
A hyperbola and its conjugate hyperbola. In geometry, a conjugate hyperbola to a given hyperbola shares the same asymptotes but lies in the opposite two sectors of the plane compared to the original hyperbola. A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones ...
The hyperbola is the isogonal conjugate of , the line joining the circumcenter and the incenter. [3] This fact leads to a few interesting properties. Specifically all the points lying on the line O I {\displaystyle OI} have their isogonal conjugates lying on the hyperbola.
The transverse axis of a hyperbola coincides with the major axis. [4] In a hyperbola, a conjugate axis or minor axis of length , corresponding to the minor axis of an ellipse, can be drawn perpendicular to the transverse axis or major axis, the latter connecting the two vertices (turning points) of the hyperbola, with the two axes intersecting ...
Since both the transverse axis and the conjugate axis are axes of symmetry, the symmetry group of a hyperbola is the Klein four-group. The rectangular hyperbolas xy = constant admit group actions by squeeze mappings which have the hyperbolas as invariant sets.
The Rytz’s axis construction is a basic method of descriptive geometry to find the axes, the semi-major axis and semi-minor axis and the vertices of an ellipse, starting from two conjugated half-diameters. If the center and the semi axis of an ellipse are determined the ellipse can be drawn using an ellipsograph or by hand (see ellipse).
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Two or no vertices are obtained for each axis, since, in the case of the hyperbola, the minor axis does not intersect the hyperbola at a point with real coordinates. However, from the broader view of the complex plane, the minor axis of an hyperbola does intersect the hyperbola, but at points with complex coordinates. [12]
Apollonius of Perga gave the following construction of conjugate diameters, given the conjugate hyperbola: "If Q be any point on a hyperbola and CE be drawn from the centre parallel to the tangent at Q to meet the conjugate hyperbola in E, then (1) the tangent at E will be parallel to CQ and (2) CQ and CE will be conjugate diameters." [2]