Search results
Results From The WOW.Com Content Network
A hyperbola and its conjugate hyperbola. In geometry, a conjugate hyperbola to a given hyperbola shares the same asymptotes but lies in the opposite two sectors of the plane compared to the original hyperbola. A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones ...
The transverse axis of a hyperbola coincides with the major axis. [4] In a hyperbola, a conjugate axis or minor axis of length , corresponding to the minor axis of an ellipse, can be drawn perpendicular to the transverse axis or major axis, the latter connecting the two vertices (turning points) of the hyperbola, with the two axes intersecting ...
The axes of symmetry or principal axes are the transverse axis (containing the segment of length 2a with endpoints at the vertices) and the conjugate axis (containing the segment of length 2b perpendicular to the transverse axis and with midpoint at the hyperbola's center). [6]
The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation = In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length
The Rytz’s axis construction is a basic method of descriptive geometry to find the axes, the semi-major axis and semi-minor axis and the vertices of an ellipse, starting from two conjugated half-diameters. If the center and the semi axis of an ellipse are determined the ellipse can be drawn using an ellipsograph or by hand (see ellipse).
The hyperbola is the isogonal conjugate of , the line joining the circumcenter and the incenter. [3] This fact leads to a few interesting properties. Specifically all the points lying on the line O I {\displaystyle OI} have their isogonal conjugates lying on the hyperbola.
Apollonius of Perga gave the following construction of conjugate diameters, given the conjugate hyperbola: "If Q be any point on a hyperbola and CE be drawn from the centre parallel to the tangent at Q to meet the conjugate hyperbola in E, then (1) the tangent at E will be parallel to CQ and (2) CQ and CE will be conjugate diameters." [2]
The case a = 1 is called the unit hyperbola. The conjugate hyperbola is given by {: ‖ ‖ =} with an upper and lower branch passing through (0, a) and (0, −a). The hyperbola and conjugate hyperbola are separated by two diagonal asymptotes which form the set of null elements: