When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of rules of inference - Wikipedia

    en.wikipedia.org/wiki/List_of_rules_of_inference

    The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.

  3. Pigeonhole principle - Wikipedia

    en.wikipedia.org/wiki/Pigeonhole_principle

    This is not true for infinite sets: Consider the function on the natural numbers that sends 1 and 2 to 1, 3 and 4 to 2, 5 and 6 to 3, and so on. There is a similar principle for infinite sets: If uncountably many pigeons are stuffed into countably many pigeonholes, there will exist at least one pigeonhole having uncountably many pigeons stuffed ...

  4. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...

  5. Wason selection task - Wikipedia

    en.wikipedia.org/wiki/Wason_selection_task

    The Wason selection task (or four-card problem) is a logic puzzle devised by Peter Cathcart Wason in 1966. [1] [2] [3] It is one of the most famous tasks in the study of deductive reasoning. [4] An example of the puzzle is: You are shown a set of four cards placed on a table, each of which has a number on one side and a color on the other.

  6. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    If there is a solution for k dollars that includes at least one 4-dollar coin, replace it by a 5-dollar coin to make k + 1 dollars. Otherwise, if only 5-dollar coins are used, k must be a multiple of 5 and so at least 15; but then we can replace three 5-dollar coins by four 4-dollar coins to make k + 1 dollars. In each case, S(k + 1) is true.

  7. Modus tollens - Wikipedia

    en.wikipedia.org/wiki/Modus_tollens

    In propositional logic, modus tollens (/ ˈ m oʊ d ə s ˈ t ɒ l ɛ n z /) (MT), also known as modus tollendo tollens (Latin for "mode that by denying denies") [2] and denying the consequent, [3] is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q ...

  8. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values 3 and 1 nor between 4 and 4, that is, 3 < 1 and 4 < 4 both evaluate to false.

  9. Many-valued logic - Wikipedia

    en.wikipedia.org/wiki/Many-valued_logic

    Many-valued logic (also multi-or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. Classical two-valued logic may be extended to n-valued logic for n greater than