Search results
Results From The WOW.Com Content Network
The sign of the weight of a tensor density, such as the weight of the determinant of the covariant metric tensor. The active and passive sign convention of current, voltage and power in electrical engineering. A sign convention used for curved mirrors assigns a positive focal length to concave mirrors and a negative focal length to convex mirrors.
Radius of curvature sign convention for optical design. Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis.
For a spherically-curved mirror in air, the magnitude of the focal length is equal to the radius of curvature of the mirror divided by two. The focal length is positive for a concave mirror, and negative for a convex mirror. In the sign convention used in optical design, a concave mirror has negative radius of curvature, so
A concave mirror, or converging mirror, has a reflecting surface that is recessed inward (away from the incident light). Concave mirrors reflect light inward to one focal point. They are used to focus light. Unlike convex mirrors, concave mirrors show different image types depending on the distance between the object and the mirror.
The signs are reversed for the back surface of the lens: R 2 is positive if the surface is concave, and negative if it is convex. This is an arbitrary sign convention; some authors choose different signs for the radii, which changes the equation for the focal length. For a thin lens, d is much smaller than one of the radii of curvature (either ...
For optics like convex lenses, the converging point of the light exiting the lens is on the input side of the focal plane, and is positive in optical power. For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power.
+ = + (+), where the signs of the radii follow the Cartesian sign convention. A point source as imaged by a system with negative (top row), zero (middle row), and positive spherical aberration (bottom row). The middle column shows the focused image, columns to the left show defocusing toward the inside, and columns to the right show defocusing ...
A concave mirror with light rays Center of curvature. In geometry, the center of curvature of a curve is a point located at a distance from the curve equal to the radius of curvature lying on the curve normal vector. It is the point at infinity if the curvature is zero. The osculating circle to the curve is centered at the centre of curvature.