Search results
Results From The WOW.Com Content Network
Thus the length of a curve is a non-negative real number. Usually no curves are considered which are partly spacelike and partly timelike. In theory of relativity, arc length of timelike curves (world lines) is the proper time elapsed along the world line, and arc length of a spacelike curve the proper distance along the curve.
Other lengths may be used—such as 100 metres (330 ft) where SI is favoured or a shorter length for sharper curves. Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius.
The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle. The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure).
has a length equal to one and is thus a unit tangent vector. If the curve is twice differentiable, that is, if the second derivatives of x and y exist, then the derivative of T(s) exists. This vector is normal to the curve, its length is the curvature κ(s), and it is oriented toward the center of curvature. That is,
The equator of the unit sphere is a parametrized curve given by ((), ()) = (,) with t ranging from 0 to 2 π. The line element may be used to calculate the length of this curve. The line element may be used to calculate the length of this curve.
For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof. [1] [2] [3]
A space curve is a curve for which is at least three-dimensional; a skew curve is a space curve which lies in no plane. These definitions of plane, space and skew curves apply also to real algebraic curves , although the above definition of a curve does not apply (a real algebraic curve may be disconnected ).
The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...