Search results
Results From The WOW.Com Content Network
In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...
In practice, a salt is usually generated using a Cryptographically Secure PseudoRandom Number Generator. CSPRNGs are designed to produce unpredictable random numbers which can be alphanumeric. While generally discouraged due to lower security, some systems use timestamps or simple counters as a source of salt.
Random number generation in kernel space was implemented for the first time for Linux [2] in 1994 by Theodore Ts'o. [6] The implementation used secure hashes rather than ciphers, [clarification needed] to avoid cryptography export restrictions that were in place when the generator was originally designed.
In cryptography, an initialization vector (IV) or starting variable [1] is an input to a cryptographic primitive being used to provide the initial state. The IV is typically required to be random or pseudorandom, but sometimes an IV only needs to be unpredictable or unique.
Mask generation functions are deterministic; the octet string output is completely determined by the input octet string. The output of a mask generation function should be pseudorandom, that is, if the seed to the function is unknown, it should be infeasible to distinguish the output from a truly random string. [1]
In cryptography, a pseudorandom function family, abbreviated PRF, is a collection of efficiently-computable functions which emulate a random oracle in the following way: no efficient algorithm can distinguish (with significant advantage) between a function chosen randomly from the PRF family and a random oracle (a function whose outputs are fixed completely at random).
OpenSSL's pseudo-random number generator acquires entropy using complex programming methods. To keep the Valgrind analysis tool from issuing associated warnings, a maintainer of the Debian distribution applied a patch to Debian's variant of the OpenSSL suite, which inadvertently broke its random number generator by limiting the overall number ...
[29] [30] Subsequently, this made it possible for OpenSSH to avoid any dependency on OpenSSL, via a compile-time option. [31] ChaCha20 is also used for the arc4random random number generator in FreeBSD, [32] OpenBSD, [33] and NetBSD [34] operating systems, instead of the broken RC4, and in DragonFly BSD [35] for the CSPRNG subroutine of the kernel.