Search results
Results From The WOW.Com Content Network
Notably, ℵ ω is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory not to be equal to the cardinality of the set of all real numbers 2 ℵ 0: For any natural number n ≥ 1, we can consistently assume that 2 ℵ 0 = ℵ n, and moreover it is possible to assume that 2 ℵ 0 is as least as large ...
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The name of a number 10 3n+3, where n is greater than or equal to 1000, is formed by concatenating the names of the numbers of the form 10 3m+3, where m represents each group of comma-separated digits of n, with each but the last "-illion" trimmed to "-illi-", or, in the case of m = 0, either "-nilli-" or "-nillion". [17]
Binary: The base-two numeral system used by computers, with digits 0 and 1. Ternary: The base-three numeral system with 0, 1, and 2 as digits. Quaternary: The base-four numeral system with 0, 1, 2, and 3 as digits.
The ultimate in large numbers was, until recently, the concept of infinity, a number defined by being greater than any finite number, and used in the mathematical theory of limits. However, since the 19th century, mathematicians have studied transfinite numbers , numbers which are not only greater than any finite number, but also, from the ...
Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set [9] (e.g., "the third man from the left" or "the twenty-seventh day of January").
the power set of the set of real numbers, so it is the number of subsets of the real line, or the number of sets of real numbers; the power set of the power set of the set of natural numbers; the set of all functions from to ()
(The sequence Ω has this property first for ω 0 +1. [ω 0 +1 should be ω 0.]) Now Ω ′ (and therefore also Ω) cannot be a consistent multiplicity. For if Ω ′ were consistent, then as a well-ordered set, a number δ would correspond to it which would be greater than all numbers of the system Ω; the number δ, however, also belongs to ...