Search results
Results From The WOW.Com Content Network
In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of ...
In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1] That is, it is a kite with a circumcircle (i.e., a cyclic kite). Thus the right kite is a convex quadrilateral and has two opposite right ...
The kites are exactly the orthodiagonal quadrilaterals that contain a circle tangent to all four of their sides; that is, the kites are the tangential orthodiagonal quadrilaterals. [ 1 ] A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram ).
kite; Parallelogram. Rhombus (equilateral parallelogram) Lozenge; Rhomboid; ... Hyperbolic triangle (non-Euclidean geometry) Isosceles triangle; Kepler triangle ...
The kite is a quadrilateral whose four interior angles are 72, 72, 72, and 144 degrees. The kite may be bisected along its axis of symmetry to form a pair of acute Robinson triangles (with angles of 36, 72 and 72 degrees). The dart is a non-convex quadrilateral whose four interior angles are 36, 72, 36, and 216 degrees. The dart may be bisected ...
A kite is a tethered heavier-than-air or lighter-than-air craft with wing surfaces that react against the air to create lift and drag forces. [2] A kite consists of wings, tethers and anchors. Kites often have a bridle and tail to guide the face of the kite so the wind can lift it. [3]
In Euclidean geometry, a kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other. You could cite the reference "kite definition" in the "External Links" section, except that definition reads: A quadrilateral with two distinct pairs of equal adjacent sides. A kite-shaped figure.
In a deltoidal icositetrahedron, each face is a kite-shaped quadrilateral. The side lengths of these kites can be expressed in the ratio 0.7731900694928638:1 Specifically, the side adjacent to the obtuse angle has a length of approximately 0.707106785, while the side adjacent to the acute angle has a length of approximately 0.914213565.