When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Pythagorean theorem. The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c). In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.

  3. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    Sum of angles of a triangle. In a Euclidean space, the sum of angles of a triangle equals a straight angle (180 degrees, π radians, two right angles, or a half- turn). A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides. It was unknown for a long time whether other geometries exist, for which this sum is different.

  4. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Although not actually a theorem at the time (meaning a mathematical statement for which proof exists), the marginal note became known over time as Fermat's Last Theorem, [30] as it was the last of Fermat's asserted theorems to remain unproved. [36] [37]

  5. Fermat point - Wikipedia

    en.wikipedia.org/wiki/Fermat_point

    Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...

  6. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  7. Jacobi's theorem (geometry) - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_theorem_(geometry)

    The Jacobi point is a generalization of the Fermat point, which is obtained by letting α = β = γ = 60° and ABC having no angle being greater or equal to 120°. If the three angles above are equal, then N lies on the rectangular hyperbola given in areal coordinates by. which is Kiepert's hyperbola. Each choice of three equal angles ...

  8. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular ...

  9. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    Ceva's theorem. Geometric relation between line segments from a triangle's vertices and their intersection. Ceva's theorem, case 1: the three lines are concurrent at a point O inside ABC. Ceva's theorem, case 2: the three lines are concurrent at a point O outside ABC. In Euclidean geometry, Ceva's theorem is a theorem about triangles.